Cart (Loading....) | Create Account
Close category search window
 

An Underlap Channel-Embedded Field-Effect Transistor for Biosensor Application in Watery and Dry Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Kim, Jee-Yeon ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Ahn, J.-H. ; Sung-Jin Choi ; Maesoon Im
more authors

An underlap channel-embedded FET is proposed for electrical, label-free biosensor in both watery and dry environments, and current-voltage characteristics measured under each environment are compared. To investigate the effectiveness of the underlap device as a biosensor for both environments, antigen-antibody binding of an avian influenza (AI) is used. Antibody of AI binding on antigen-immobilized surface provides additional negative charge on underlap surface, and they give rise to channel potential increasing and result in drain current reduction. In this study, we have verified that the biosensor characteristics measured under dry environment is valid as much as they are valid for watery environment.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 2 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.