By Topic

Operational Behaviors of Flux-Coupling Type SFCL Using Integrated Three Phase Transformer Under Transient State

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kyoung-Hun Ha ; Dept. of Electr. Eng., Chosun Univ., Gwangju, South Korea ; Soo-Geun Choi ; Yong-Sun Cho ; Hyo-Sang Choi

A superconducting fault current limiter (SFCL) has been proposed as an efficient method to protect a power grid from fault current. For applying a SFCL to the power grid, the various ways to increase the capacity of a SFCL should be researched in advance. Thus, the study on SFCL using a transformer has been performed. In this paper, we analyzed operational behaviors of integrated three-phase flux-coupling type SFCL under transient states in the power grid. When single and double line-to-ground fault occurred, all superconducting elements of sound and fault phase were quenched unlike segregated type SFCL. The fault current was limited by mutual supplementing in the all phases. As a result, the limited rate of fault current was small, even though the applied voltage was increased. It means this type SFCL limited the fault current efficiently by sharing of magnetic flux.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )