Cart (Loading....) | Create Account
Close category search window
 

Stability of a Class of Linear Switching Systems with Applications to Two Consensus Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youfeng Su ; Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Jie Huang

In this paper, we first establish a stability result for a class of linear switched systems involving Kronecker product. The problem is interesting in that the system matrix does not have to be Hurwitz at any time instant. This class of linear switched systems arises in the control of multi-agent systems under switching network topology. As applications of this stability result, we give the solvability conditions for both the leaderless consensus problem and the leader-following consensus problem for general marginally stable linear multi-agent systems under switching network topology. In contrast with some existing results, our results only assume that the dynamic graph is uniformly connected.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.