By Topic

Symbolic integration and autonomous state estimation: Building blocks for an intelligent power grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
A. P. Sakis Meliopoulos ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA ; George J. Cokkinides ; Sungyun Choi ; Evangelos Farantatos
more authors

This paper presents how symbolic computational approaches can be combined with advanced power system algorithms in order to implement advanced smart grid applications that will enable the modernization and the automation of the grid. We initially present a method for symbolically defining and integrating complex nonlinear dynamical systems in order to automatically compute the model of the devices that are connected to the power system, independently of their complexity. This generic form of the device model as computed by the “symbolic integrator” is then used as an input to numerous advanced real time power system applications. In this paper, an autonomous state estimator is presented as a demonstrative application. The proposed operational scheme is based on the combination of advanced state estimation algorithms that enable robotic (autonomous) power system operation. A laboratory setup is also presented to demonstrate the applicability of the proposed scheme.

Published in:

Intelligent System Application to Power Systems (ISAP), 2011 16th International Conference on

Date of Conference:

25-28 Sept. 2011