By Topic

Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shiquan He ; University of Electronic Science and Technology of China, Chengdu, China ; Wei E. I. Sha ; Lijun Jiang ; Wallace C. H. Choy
more authors

The superior ability of plasmonic structures to manipulate light has propelled their extensive applications in nanophotonics techniques and devices. Computational electromagnetics plays a critical role in characterizing and optimizing the nanometallic structures. In this paper, a general numerical algorithm, which is different from the commonly used discrete dipole approximation, the finite-difference time-domain, and the surface integral equation (SIE) method, is proposed to model plasmonic nanostructures. In this algorithm, the generalized impedance boundary condition (GIBC) based on the finite element method (FEM) is formulated and converted to the SIE. The plasmonic nanostructures with arbitrary inhomogeneity and shapes are modeled by the FEM. Their complex electromagnetic interactions are accurately described by the SIE method. As a result, the near field of plasmonic nanostructures can be accurately calculated. The higher order basis functions, together with the multifrontal massively parallel sparse direct solver, are involved to provide a higher order accurate and fast solver.

Published in:

IEEE Transactions on Nanotechnology  (Volume:11 ,  Issue: 2 )