By Topic

Ensemble Classifiers for Steganalysis of Digital Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kodovsky, J. ; Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA ; Fridrich, J. ; Holub, V.

Today, the most accurate steganalysis methods for digital media are built as supervised classifiers on feature vectors extracted from the media. The tool of choice for the machine learning seems to be the support vector machine (SVM). In this paper, we propose an alternative and well-known machine learning tool-ensemble classifiers implemented as random forests-and argue that they are ideally suited for steganalysis. Ensemble classifiers scale much more favorably w.r.t. the number of training examples and the feature dimensionality with performance comparable to the much more complex SVMs. The significantly lower training complexity opens up the possibility for the steganalyst to work with rich (high-dimensional) cover models and train on larger training sets-two key elements that appear necessary to reliably detect modern steganographic algorithms. Ensemble classification is portrayed here as a powerful developer tool that allows fast construction of steganography detectors with markedly improved detection accuracy across a wide range of embedding methods. The power of the proposed framework is demonstrated on three steganographic methods that hide messages in JPEG images.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 2 )