By Topic

SSD: A Robust RF Location Fingerprint Addressing Mobile Devices' Heterogeneity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mahtab Hossain, A.K.M. ; Internet Educ. & Res. Lab. (intERLab), Asian Inst. of Technol. (AIT), Khlong Luang, Thailand ; Yunye Jin ; Wee-Seng Soh ; Hien Nguyen Van

Fingerprint-based methods are widely adopted for indoor localization purpose because of their cost-effectiveness compared to other infrastructure-based positioning systems. However, the popular location fingerprint, Received Signal Strength (RSS), is observed to differ significantly across different devices' hardware even under the same wireless conditions. We derive analytically a robust location fingerprint definition, the Signal Strength Difference (SSD), and verify its performance experimentally using a number of different mobile devices with heterogeneous hardware. Our experiments have also considered both Wi-Fi and Bluetooth devices, as well as both Access-Point(AP)-based localization and Mobile-Node (MN)-assisted localization. We present the results of two well-known localization algorithms (K Nearest Neighbor and Bayesian Inference) when our proposed fingerprint is used, and demonstrate its robustness when the testing device differs from the training device. We also compare these SSD-based localization algorithms' performance against that of two other approaches in the literature that are designed to mitigate the effects of mobile node hardware variations, and show that SSD-based algorithms have better accuracy.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 1 )