By Topic

Reassessing Top-Down Join Enumeration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fender, Pit ; Mannheim University, Germany ; Moerkotte, Guido

Finding an optimal execution order of join operations is a crucial task in every cost-based query optimizer. Since there are many possible join trees for a given query, the overhead of the join (tree) enumeration algorithm per valid join tree should be minimal. In the case of a clique-shaped query graph, the best known top-down algorithm has a complexity of Theta (n^2) per join tree, where n is the number of relations. In this paper, we present an algorithm that has an according O(1) complexity in this case. We show experimentally that this more theoretical result has indeed a high impact on the performance in other nonclique settings. This is especially true for cyclic query graphs. Further, we evaluate the performance of our new algorithm and compare it with the best top-down and bottom-up algorithms described in the literature.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 10 )