By Topic

Finding Rare Classes: Active Learning with Generative and Discriminative Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Timothy M. Hospedales ; Queen Mary University of London, London ; Shaogang Gong ; Tao Xiang

Discovering rare categories and classifying new instances of them are important data mining issues in many fields, but fully supervised learning of a rare class classifier is prohibitively costly in labeling effort. There has therefore been increasing interest both in active discovery: to identify new classes quickly, and active learning: to train classifiers with minimal supervision. These goals occur together in practice and are intrinsically related because examples of each class are required to train a classifier. Nevertheless, very few studies have tried to optimise them together, meaning that data mining for rare classes in new domains makes inefficient use of human supervision. Developing active learning algorithms to optimise both rare class discovery and classification simultaneously is challenging because discovery and classification have conflicting requirements in query criteria. In this paper, we address these issues with two contributions: a unified active learning model to jointly discover new categories and learn to classify them by adapting query criteria online; and a classifier combination algorithm that switches generative and discriminative classifiers as learning progresses. Extensive evaluation on a batch of standard UCI and vision data sets demonstrates the superiority of this approach over existing methods.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:25 ,  Issue: 2 )