By Topic

Efficient Byzantine Fault-Tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Veronese, G.S. ; Stefanini IT Solutions, Mexico City, Mexico ; Correia, M. ; Bessani, A.N. ; Lau Cheuk Lung
more authors

We present two asynchronous Byzantine fault-tolerant state machine replication (BFT) algorithms, which improve previous algorithms in terms of several metrics. First, they require only 2f+1 replicas, instead of the usual 3f+1. Second, the trusted service in which this reduction of replicas is based is quite simple, making a verified implementation straightforward (and even feasible using commercial trusted hardware). Third, in nice executions the two algorithms run in the minimum number of communication steps for nonspeculative and speculative algorithms, respectively, four and three steps. Besides the obvious benefits in terms of cost, resilience and management complexity-fewer replicas to tolerate a certain number of faults-our algorithms are simpler than previous ones, being closer to crash fault-tolerant replication algorithms. The performance evaluation shows that, even with the trusted component access overhead, they can have better throughput than Castro and Liskov's PBFT, and better latency in networks with nonnegligible communication delays.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 1 )