By Topic

A New Efficient Data Structure for Storage and Retrieval of Multiple Biosequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Steinbiss, S. ; Center for Bioinf., Univ. of Hamburg, Hamburg, Germany ; Kurtz, S.

Today's genome analysis applications require sequence representations allowing for fast access to their contents while also being memory-efficient enough to facilitate analyses of large-scale data. While a wide variety of sequence representations exist, lack of a generic implementation of efficient sequence storage has led to a plethora of poorly reusable or programming language- specific implementations. We present a novel, space-efficient data structure (GtEncseq) for storing multiple biological sequences of variable alphabet size, with customizable character transformations, wildcard support, and an assortment of internal representations optimized for different distributions of wildcards and sequence lengths. For the human genome (3.1 gigabases, including 237 million wildcard characters) our representation requires only 2 + 8 · 10-6 bits per character. Implemented in C, our portable software implementation provides a variety of methods for random and sequential access to characters and substrings (including different reading directions) using an object-oriented interface. In addition, it includes access to metadata like sequence descriptions or character distributions. The library is extensible to be used from various scripting languages. GtEncseq is much more versatile than previous solutions, adding features that were previously unavailable. Benchmarks show that it is competitive with respect to space and time requirements.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 2 )