By Topic

The DIMM tree architecture: A high bandwidth and scalable memory system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kanit Therdsteerasukdi ; Computer Science Department, University of California, Los Angeles, USA ; Gyung-Su Byun ; Jeremy Ir ; Glenn Reinman
more authors

The demand for capacity and off-chip bandwidth to DRAM will continue to grow as we integrate more cores onto a die. However, as the data rate of DRAM has increased, the number of DIMMs supported on a multi-drop bus has decreased. Therefore, traditional memory systems are not sufficient to meet both these demands. We propose the DIMM tree architecture for better scalability by connecting the DIMMs as a tree. The DIMM tree architecture is able to grow the number of DIMMs exponentially with each level of latency in the tree. We also propose application of Multiband Radio Frequency Interconnect (MRF-I) to the DIMM tree architecture for even greater scalability and higher throughput. The DIMM tree architecture without MRF-I was able to scale up to 64 DIMMs with only an 8% degradation in throughput over an ideal system. The DIMM tree architecture with MRF-I was able to increase throughput by 68% (up to 200%) on a 64-DIMM system over a 4-DIMM system.

Published in:

Computer Design (ICCD), 2011 IEEE 29th International Conference on

Date of Conference:

9-12 Oct. 2011