By Topic

Special-purposed VLIW architecture for IEEE-754 quadruple precision elementary functions on FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuanwu Lei ; National Laboratory for Parallel&Distributed Processing, National University of Defense Technology, Changsha, China 410073 ; Yong Dou ; Li Shen ; Jie Zhou
more authors

This work explores the feasibility to implement IEEE-754-2008 standard quadruple precision (Quad) elementary functions on recent FPGAs with plenty of embedded memories and DSP blocks. First, we analysis the implementation algorithm of Quad elementary functions in detail. Then, we present a special-purpose Very Large Instruction Word (VLIW) architecture for Quad elementary function (QE-Processor). The proposed processor uses a unified hardware structure, equipped with multiple basic arithmetic units, to implement various Quad algebraic and transcendental functions, in which several tradeoffs between latency and resource usage are carefully planned to avoid unbalanced resource utilization. The performance is improved through the explicitly parallel technology of custom VLIW instruction. Finally, we create a prototype of QE-Processor into Xilinx Virtex-5 and Virtex-6 FPGA chips. The experimental results show that our design can guarantee that the percentage of correct rounding is more than 99.9%. Moreover, the FPGA implementation on Virtex-6 XC6VLX760-2FF1760 FPGA, running at 220 MHz, outperforms the parallel software approach based on OpenMP running on an Intel Xeon E5620 CPU at 2.40GHz by a factor of 13X-20X for special function applications in Boost library.

Published in:

Computer Design (ICCD), 2011 IEEE 29th International Conference on

Date of Conference:

9-12 Oct. 2011