By Topic

Artificial Noise Generation from Cooperative Relays for Everlasting Secrecy in Two-Hop Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Goeckel, D. ; Electr. & Comput. Eng. Dept., Univ. of Massachusetts, Amherst, MA, USA ; Vasudevan, S. ; Towsley, D. ; Adams, S.
more authors

The secure transmission of information in wireless networks without knowledge of eavesdropper channels or locations is considered. Two key mechanisms are employed: artificial noise generation from system nodes other than the transmitter and receiver, and a form of multi-user diversity that allows message reception in the presence of the artificial noise. We determine the maximum number of independently-operating and uniformly distributed eavesdroppers that can be present while the desired secrecy is achieved with high probability in the limit of a large number of system nodes. While our main motivation is considering eavesdroppers of unknown location, we first consider the case where the path-loss is identical between all pairs of nodes. In this case, a number of eavesdroppers that is exponential in the number of systems nodes can be tolerated. In the case of uniformly distributed eavesdroppers of unknown location, any number of eavesdroppers whose growth is sub-linear in the number of system nodes can be tolerated. The proposed approach significantly outperforms a power control approach based on standard multi-user diversity.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 10 )