By Topic

Performance Characteristics and Metrics for Intra-Pulse Radar-Embedded Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blunt, S.D. ; Electr. Eng. & Comput. Sci. Dept., Univ. of Kansas, Lawrence, KS, USA ; Metcalf, J.G. ; Biggs, C.R. ; Perrins, E.

Low probability of intercept (LPI) communication generally relies on the presence of noise to obfuscate a covert signal through the use of spectral spreading or hopping. In contrast, this paper addresses the use of ambient interference from other man-made emissions as a means to mask the presence of covert communication. Specifically, the high power, wide bandwidth, and repeating structure of pulsed radar systems provide an advantageous framework within which to embed a communication signal. The operating paradigm considered here is that of an RF tag/transponder that is illuminated by the radar and intends to covertly communicate with the radar or some other desired receiver while being masked by the ambient radar backscatter to avoid detection by an intercept receiver. Communication takes place on an intra-pulse (or individual pulse) basis to maximize the data rate. The impact of multipath, and its exploitation using time reversal to achieve spatio-temporal focusing, is considered. The processing gain for the destination receiver and intercept receiver are derived analytically and subsequently used to optimize the parameterization of communication symbol design.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 10 )