By Topic

Remote sensing of forested environments: The effects of a radiometrically porous and structurally complex surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Niemann, K.O. ; Dept. of Geogr., Univ. of Victoria, Victoria, TX, USA ; Goodenough, D.G. ; Loos, R. ; Quinn, G.
more authors

This study used foliar chemistry samples as calibration data to address the use of high spatial and spectral resolution hyperspectral and LiDAR data to model and predict foliar chlorophyll. We used linear multiple regression models to derive three relationships: total plot reflectance only, total plot integrated with LiDAR structure, and top of canopy reflectance. Results of the modeling suggest that nonfoliar reflectors degrade the results of the modeling and that the use of LiDAR-defined structural descriptors do little to help resolve this. The top of the canopy with the highest S/N yielded the best results. Preliminary analysis of LiDAR-related canopy structure yields some clues into the relationships with reflectance.

Published in:

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011 3rd Workshop on

Date of Conference:

6-9 June 2011