By Topic

Localizing failure-inducing program edits based on spectrum information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lingming Zhang ; Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Miryung Kim ; Khurshid, S.

Keeping evolving systems fault free is hard. Change impact analysis is a well-studied methodology for finding faults in evolving systems. For example, in order to help developers identify failure-inducing edits, Chianti extracts program edits as atomic changes between different program versions, selects affected tests, and determines a subset of those changes that might induce test failures. However, identifying real regression faults is challenging for developers since the number of affecting changes related to each test failure may still be too large for manual inspection. This paper presents a novel approach FAULTTRACER which ranks program edits in order to reduce developers' effort in manually inspecting all affecting changes. FAULTTRACER adapts spectrum-based fault localization techniques and applies them in tandem with an enhanced change impact analysis that uses Extended Call Graphs to identify failure-inducing edits more precisely. We evaluate FAULTTRACER using 23 versions of 4 real-world Java programs from the Software Infrastructure Repository. The experimental results show that FAULTTRACER outperforms Chianti in selecting affected tests (slightly better, but handles safety problems of Chianti) as well as in determining affecting changes (with an improvement of approximately 20%). By ranking the affecting changes using spectrum-based test behavior profile, for 14 out of 22 studied failures, FAULTTRACER places a real regression fault within top 3 atomic changes, significantly reducing developers' effort in inspecting potential failure-inducing edits.

Published in:

Software Maintenance (ICSM), 2011 27th IEEE International Conference on

Date of Conference:

25-30 Sept. 2011