Cart (Loading....) | Create Account
Close category search window
 

Inverse Dynamics of Human Passive Motion Based on Iterative Learning Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Taniguchi, S. ; R&D Center, Panasonic Electr. Works Co., Ltd., Kadoma, Japan ; Kino, H. ; Ozawa, R. ; Ishibashi, R.
more authors

Estimation of joint torque is an important objective in the analyses of human motion. In particular, many applications seek to discern torque during a desired human motion, which is equivalent to solving the inverse dynamics. The computed torque method is a conventional means of calculating inverse dynamics. The obtained torque, however, invariably includes errors resulting from inexact inertial and viscoelastic parameters. This paper presents a method for solving the inverse dynamics of a human arm passively during tracking. To achieve precise human motion tracking, iterative learning control is used for motion generation. Some experiments that target a human arm are executed to validate the proposed method.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 2 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.