By Topic

Transmission Strategies in Multiple-Access Fading Channels With Statistical QoS Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deli Qiao ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Gursoy, M.C. ; Velipasalar, S.

Effective capacity, which provides the maximum constant arrival rate that a given service process can support while satisfying statistical queueing constraints, is analyzed in a multiuser scenario. In particular, the effective capacity region of fading multiple-access channels in the presence of quality of service (QoS) constraints is studied. Perfect channel side information is assumed to be available at both the transmitters and the receiver. It is initially assumed that the transmitters send the information at a fixed power level and, hence, do not employ power control policies. Under this assumption, the performance achieved by superposition coding with successive decoding techniques is investigated. It is shown that varying the decoding order with respect to the channel states can significantly increase the achievable throughput region. In the two-user case, the optimal decoding strategy is determined for the scenario in which the users have the same QoS constraints. The performance of orthogonal transmission strategies is also analyzed. It is shown that for certain QoS constraints, time-division multiple access can achieve better performance than superposition coding if fixed successive decoding order is used at the receiver side. In the subsequent analysis, power control policies are incorporated into the transmission strategies. The optimal power allocation policies for any fixed decoding order over all channel states are identified. For a given variable decoding-order strategy, the conditions that the optimal power control policies must satisfy are determined, and an algorithm that can be used to compute these optimal policies is provided.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 3 )