By Topic

The Beneficial Role of SMES Coil in DC Lines as an Energy Buffer for Integrating Large Scale Wind Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taesik Nam ; Yonsei Univ., Seoul, South Korea ; Jae Woong Shim ; Kyeon Hur

Wind energy resources are accounting for an ever-greater portion of the many nations' generation portfolios to address global climate change concerns and reduce carbon dioxide emissions. Increasing the role of wind in the power generation mix, however, presents significant operational challenges in ensuring the grid security and power quality due to the inherent resource variability. This paper addresses the integration of large-scale wind resources into the grid through DC lines incorporating SMES coil: Doubly-Fed Induction Generator (DFIG) type wind power plant linked by line-commutated HVDC with and without SMES is investigated using PSCAD/EMTDC for various operating scenarios. The study demonstrates the effectiveness of applying SMES coil in the DC line for mitigating the wind power intermittency and for improving its dispatchability and quality. Enhanced robustness for AC and DC faults due to the SMES coil and its benefits are also discussed.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )