Cart (Loading....) | Create Account
Close category search window
 

An empirical study of unsupervised sentiment classification of Chinese reviews

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Zhai, Zhongwu ; State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ; Xu, Hua ; Jia, Peifa

This paper is an empirical study of unsupervised sentiment classification of Chinese reviews. The focus is on exploring the ways to improve the performance of the unsupervised sentiment classification based on limited existing sentiment resources in Chinese. On the one hand, all available Chinese sentiment lexicons — individual and combined — are evaluated under our proposed framework. On the other hand, the domain dependent sentiment noise words are identified and removed using unlabeled data, to improve the classification performance. To the best of our knowledge, this is the first such attempt. Experiments have been conducted on three open datasets in two domains, and the results show that the proposed algorithm for sentiment noise words removal can improve the classification performance significantly.

Published in:

Tsinghua Science and Technology  (Volume:15 ,  Issue: 6 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.