By Topic

Delay-dependent exponential stability of impulsive stochastic systems with time-varying delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng, Pei ; Systems Engineering Institute, South China University of Technology, Guangzhou 510640, P. R. China; School of Mathematical Science, Anhui University, Hefei 230039, P. R. China ; Deng, Feiqi ; Peng, Yunjian

The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:22 ,  Issue: 5 )