By Topic

Multiple-target tracking with adaptive sampling intervals for phased-array radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhang, Zhenkai ; College of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China ; Zhou, Jianjiang ; Wang, Fei ; Liu, Weiqiang
more authors

A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:22 ,  Issue: 5 )