By Topic

On-line tuning scheme for the generalized predictive controller via simulation optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shaoyuan, Li ; Institute of Automation, Shanghai Jiaotong University, Shanghai 200030, P. R. China

Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:14 ,  Issue: 2 )