Cart (Loading....) | Create Account
Close category search window
 

Modeling of gain in erbium-doped fiber amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saleh, A.A.M. ; AT&T Bell Lab., Holmdel, NJ, USA ; Jopson, R.M. ; Evankow, J.D. ; Aspell, J.

An analytic method is described for fully characterizing the gain of an erbium-doped fiber amplifier (EDFA) that is based on easily measured monochromatic absorption data. The analytic expressions presented, which involve the solution of one transcendental equation, can predict signal gains and pump absorptions in an amplifier containing an arbitrary number of pumps and signals from arbitrary directions. The gain of an amplifier was measured over a range of more than 20 dB in both pump and signal powers. The measured theoretical results agreed to within 0.5 dB. Although the results described apply explicitly to EDFAs pumped in the 1480-nm region, they are also applicable to EDFAs pumped in the 980-nm region. The method is valid whenever the gain saturation by amplified spontaneous-emission noise can be neglected, which is typically the case for amplifiers with less than about 20 dB of gain.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:2 ,  Issue: 10 )

Date of Publication:

Oct. 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.