By Topic

Energy-Aware Ant Colony Based Workload Placement in Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eugen Feller ; Centre Rennes Bretagne Atlantique, INRIA, Rennes, France ; Louis Rilling ; Christine Morin

With increasing numbers of energy hungry data centers energy conservation has now become a major design constraint. One traditional approach to conserve energy in virtualized data centers is to perform workload (i.e., VM) consolidation. Thereby, workload is packed on the least number of physical machines and over-provisioned resources are transitioned into a lower power state. However, most of the workload consolidation approaches applied until now are limited to a single resource (e.g., CPU) and rely on simple greedy algorithms such as First-Fit Decreasing (FFD), which perform resource-dissipative workload placement. Moreover, they are highly centralized and known to be hard to distribute. In this work, we model the workload consolidation problem as an instance of the multi-dimensional bin-packing (MDBP) problem and design a novel, nature-inspired workload consolidation algorithm based on the Ant Colony Optimization (ACO). We evaluate the ACO-based approach by comparing it with one frequently applied greedy algorithm (i.e., FFD). Our simulation results demonstrate that ACO outperforms the evaluated greedy algorithm as it achieves superior energy gains through better server utilization and requires less machines. Moreover, it computes solutions which are nearly optimal. Finally, the autonomous nature of the approach allows it to be implemented in a fully distributed environment.

Published in:

2011 IEEE/ACM 12th International Conference on Grid Computing

Date of Conference:

21-23 Sept. 2011