By Topic

Application of ANFIS in Predicting TiAlN Coatings Flank Wear

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Basari, A.S.H. ; Fac. of Inf. & Commun. Tech., Univ. Teknikal Malaysia Melaka, Durian Tunggal, Malaysia ; Jaya, A.S.M. ; Muhamad, M.R. ; Rahman, M.N.A.
more authors

In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate sputtering power, bias voltage and temperature were selected as the input parameters and the flank wear as an output of the process. A statistical design of experiment called Response Surface Methodology (RSM) was used in collecting optimized data. The ANFIS model was trained using the limited experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions were used for inputs as well as output. The results of ANFIS model were validated with the testing data and compared with fuzzy rule-based and RSM flank wear models in terms of the root mean square error (RMSE), co-efficient determination (R2) and model accuracy (A). The result indicated that the ANFIS model using three bell shapes membership function obtained better result compared to the fuzzy and RSM flank wear models. The result also indicated that the ANFIS model could predict the output response in high prediction accuracy even using limited training data.

Published in:

Computational Intelligence, Modelling and Simulation (CIMSiM), 2011 Third International Conference on

Date of Conference:

20-22 Sept. 2011