By Topic

Neuro-sliding-mode control of flexible-link manipulators based on singularly perturbed model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Zhang, Yu ; State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ; Yang, Tangwen ; Sun, Zengqi

A neuro-sliding-mode control (NSMC) strategy was developed to handle the complex nonlinear dynamics and model uncertainties of flexible-link manipulators. A composite controller was designed based on a singularly perturbed model of flexible-link manipulators when the rigid motion and flexible motion are decoupled. The NSMC is employed to control the slow subsystem to track a desired trajectory with a traditional sliding mode controller to stabilize the fast subsystem which represents the link vibrations. A stability analysis of the flexible modes is also given. Simulations confirm that the NSMC performs better than the traditional sliding-mode control for controlling flexible-link manipulators. The control strategy not only gives good tracking performance for the joint angle, but also effectively suppresses endpoint vibrations. The simulations also show that the control strategy has a strong self-adaptive ability for controlling manipulators with different parameters.

Published in:

Tsinghua Science and Technology  (Volume:14 ,  Issue: 4 )