Cart (Loading....) | Create Account
Close category search window
 

Behavior of MC3T3-El osteoblast cultured on chitosan modified with polyvinylpyrrolidone

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Xi, Jing ; Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China ; Gao, Yuan ; Kong, Lijun ; Gong, Yandao
more authors

The physical and chemical properties of four kinds of modified chitosan materials made by blending chitosan with polyvinylpyrrolidone (PVP) were investigated. All four of these modified chitosan materials were hydrophilic with water contact angles ranging from 59% to 69%. Fourier transform-infrared spectra of the modified materials showed a new band at 1288 cm−1, implying formation of a surface physical interpenetrating network structure. Enzyme linked immunosorbent assay results indicated that much less fibronectin was adsorbed on the modified materials than on only chitosan. The viability of MC3T3-E1 osteoblasts cultured on the materials was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl2H-tetrazolium bromide assay. The results show that adding PVP10000 into the chitosan promotes adhesion of MC3T3-E1 osteoblasts on the modified materials, but has no effect on cell growth and proliferation; while adding PVP40000 reduces cell adhesion, growth, and proliferation. The results suggest that the increased hydrophilicity of the material surface does not always improve its biocompatibility, which will influence the selection and design of biomaterials.

Published in:

Tsinghua Science and Technology  (Volume:10 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.