Cart (Loading....) | Create Account
Close category search window

Constrained predictive control of nonlinear stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yin, Yanyan ; Institute of Automation, Jiangnan University, Wuxi 214122, P. R. China ; Liu, Fei

The receding horizon control (RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs. In the given receding horizon, for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter, the cost function is optimized by constraints on state trajectories, so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set. Out of the receding horizon, the stability is guaranteed by searching a state feedback control law. Based on such stability analysis, a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed. The simulation shows the validity of this method.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:21 ,  Issue: 5 )

Date of Publication:

Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.