By Topic

Improved differential evolution algorithm for resource-constrained project scheduling problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lianghong Wu ; College of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China; College of Electrical and Information Engineering, Hunan University, Changsha 410082, P. R. China ; Yaonan Wang ; Shaowu Zhou

An improved differential evolution (IDE) algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem (RCPSP) with the objective of minimizing project duration. Activities priorities for scheduling are represented by individual vectors and a serial scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated. To investigate the performance of the IDE-based approach for the RCPSP, it is compared against the meta-heuristic methods of hybrid genetic algorithm (HGA), particle swarm optimization (PSO) and several well selected heuristics. The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.

Published in:

Journal of Systems Engineering and Electronics  (Volume:21 ,  Issue: 5 )