By Topic

Complexity of Computing Convex Subgraphs in Custom Instruction Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joseph Reddington ; Royal Holloway College, University of London, United Kingdom ; Kubilay Atasu

Synthesis of custom instruction processors from high-level application descriptions involves automated evaluation of data-flow subgraphs as custom instruction candidates. A subgraph S of a graph D , is convex if no two vertices of S are connected by a path in D that is not also in S. An algorithm for enumerating all convex subgraphs of a directed acyclic graph (DAG) under input, output, and forbidden vertex constraints was given by Pozzi, Atasu, and Ienne. We show that this algorithm makes no more than O(|V(D)|Nin+Nout+1) recursive calls, where |V(D)| is the number of vertices in D, and Nin and Nout are input and output constraints, respectively. Therefore, when Nin and Nout are constants, the algorithm is of polynomial complexity. Furthermore, a convex subgraph S is a maximal convex subgraph if it is not a proper subgraph of some other convex subgraph, assuming that both are valid under forbidden vertex constraints. The largest maximal convex subgraph is called the maximum convex subgraph. There exist popular algorithms that enumerate maximal convex subgraphs, which all have exponential worst-case time complexity. This work shows that although no polynomial-time maximal convex subgraph enumeration algorithm can exist, the related maximum convex subgraph problem can be solved in polynomial time.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 12 )