By Topic

System-Level Leakage Variability Mitigation for MPSoC Platforms Using Body-Bias Islands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garg, Siddharth ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Marculescu, D.

Adaptive body biasing (ABB) is a popularly used technique to mitigate the increasing impact of manufacturing process variations on leakage power dissipation. The efficacy of the ABB technique can be improved by partitioning a design into a number of “body-bias islands,” each with its individual body-bias voltage. In this paper, we propose a system-level leakage variability mitigation technique to partition a multiprocessor system into body-bias islands at the processing element (PE) granularity at design time, and to optimally assign body-bias voltages to each island post-fabrication. As opposed to prior gate- and circuit-level partitioning techniques that constrain the global clock frequency of the system, we allow each island to run at a different speed and constrain only the relevant system performance metrics - in our case the execution deadlines. Experimental results show the efficacy of the proposed methodology; we demonstrate up to 40% and 60% reduction in the mean and standard deviation of leakage power dissipation respectively, compared to a baseline system without ABB. Furthermore, the proposed design-time partitioning is, on average, 38× faster than a previously proposed Monte Carlo-based technique, while providing similar reductions in leakage power dissipation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 12 )