By Topic

Hierarchical Motion Planning With Dynamical Feasibility Guarantees for Mobile Robotic Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raghvendra V. Cowlagi ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, USA ; Panagiotis Tsiotras

Motion planning for mobile vehicles involves the solution of two disparate subproblems: the satisfaction of high-level logical task specifications and the design of low-level vehicle control laws. A hierarchical solution of these two subproblems is efficient, but it may not ensure compatibility between the high-level planner and the constraints that are imposed by the vehicle dynamics. To guarantee such compatibility, we propose a motion-planning framework that is based on a special interaction between these two levels of planning. In particular, we solve a special shortest path problem on a graph at a higher level of planning, and we use a lower level planner to determine the costs of the paths in that graph. The overall approach hinges on two novel ingredients: a graph-search algorithm that operates on sequences of vertices and a lower level planner that ensures consistency between the two levels of hierarchy by providing meaningful costs for the edge transitions of a higher level planner using dynamically feasible, collision-free trajectories.

Published in:

IEEE Transactions on Robotics  (Volume:28 ,  Issue: 2 )