By Topic

Frictional Behavior of Material Couples in Superconducting MRI Magnet Systems at 4.2 K

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brice, H. ; Healthcare Sector, Siemens Magn. Technol., Oxford, UK ; Theiler, G. ; Gradt, T.

Windings in superconducting magnets operating at 4.2 K are highly susceptible to quenching caused by small frictional heat inputs. Small movements in the magnet system are inevitable during ramping due to the increasing electromagnetic forces. Friction pairs of polymer based materials have been investigated at 4.2 K to gain an understanding of their sliding behavior in conditions representative of superconducting MRI systems. The results indicate that polymer-polymer pairs experience unstable sliding behavior with repeated stick-slip whereas polymer-aluminum couples have stable sliding behavior up to high contact pressures of 20 MPa.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )