By Topic

Performance Bounds for Sparsity Pattern Recovery With Quantized Noisy Random Projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wimalajeewa, T. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA ; Varshney, P.K.

In this paper, we study the performance limits of recovering the support of a sparse signal based on quantized noisy random projections. Although the problem of support recovery of sparse signals with real valued noisy projections with different types of projection matrices has been addressed by several authors in the recent literature, very few attempts have been made for the same problem with quantized compressive measurements. In this paper, we derive performance limits of support recovery of sparse signals when the quantized noisy corrupted compressive measurements are sent to the decoder over additive white Gaussian noise channels. The sufficient conditions which ensure the perfect recovery of sparsity pattern of a sparse signal from coarsely quantized noisy random projections are derived when the maximum-likelihood decoder is used. More specifically, we find the relationships among the parameters, namely the signal dimension N , the sparsity index K , the number of noisy projections M, the number of quantization levels L, and measurement signal-to-noise ratio which ensure the asymptotic reliable recovery of the support of sparse signals when the entries of the measurement matrix are drawn from a Gaussian ensemble.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 1 )