By Topic

Development and Understanding of High-Efficiency Screen-Printed Concentrator Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chia-Wei Chen ; Univ. Center of Excellence for Photovoltaic Res. & Educ., Georgia Inst. of Technol., Atlanta, GA, USA ; Ebong, A. ; Renshaw, J. ; Tate, K.
more authors

Concentrator cells have the potential to reduce the usage of semiconductor material while producing high efficiency and more power density in a cell. Silicon solar cells now provide a unique opportunity for low-cost concentrator systems that are suitable for low to medium (2-20X) concentration because cell technology and screen-printed contacts have improved considerably. In this paper, we report on the understanding and development of low-cost manufacturable screen-printed concentrator solar cells. Computer modeling was performed first to show that, under 10% metal coverage, it is possible for screen-printed cells to have series resistance that is low enough (<;0.29 Ω·cm2) to maintain high efficiency at low to medium concentrations. This was validated by design and fabrication of 40.56-cm2 screen-printed cells using an industrial feasible process that achieved 18.8% peak efficiency at ~6 suns and 17.2% efficiency at 20 suns. Dicing a 9.9-cm2 cell, which reduces the line resistance, raised the peak efficiency to 18.9% at 10 suns and 18.5% at 20 suns. Model calculations are performed to quantitatively establish the requirements for ~20% screen-printed 2-20X concentrator cells.

Published in:

Photovoltaics, IEEE Journal of  (Volume:1 ,  Issue: 2 )