By Topic

Maximum likelihood a priori knowledge interpolation-based handset mismatch compensation for robust speaker identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Yuanfu Liao ; Department of Electronic Engineering, Taipei University of Technology, Taipei 106, China ; Zhixian Zhuang ; Jyhher Yang

Unseen handset mismatch is the major source of performance degradation in speaker identification in telecommunication environments. To alleviate the problem, a maximum likelihood a priori knowledge interpolation (ML-AKI)-based handset mismatch compensation approach is proposed. It first collects a set of handset characteristics of seen handsets to use as the a priori knowledge for representing the space of handsets. During evaluation the characteristics of an unknown test handset are optimally estimated by interpolation from the set of the a priori knowledge. Experimental results on the HTIMIT database show that the ML-AKI method can improve the average speaker identification rate from 60.00/0 to 74.60/0 as compared with conventional maximum a posteriori-adapted Gaussian mixture models. The proposed ML-AKI method is a promising method for robust speaker identification.

Published in:

Tsinghua Science and Technology  (Volume:13 ,  Issue: 4 )