By Topic

High performance predictive current control of bi-directional DC-DC converters for DC micro grid application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong Chen ; Sch. of Electron., Electr. Eng. & Comput. Sci., Queen''s Univ. of Belfast, Belfast, UK ; Lie Xu

This paper investigates predictive average current control schemes of a bi-directional DC-DC converter. By properly arranging the sampling, duty cycle updating, and controlling points, three predictive control methods are derived for better steady-state and dynamic performance. The less the delay between the sampling point and controlling point has, the better the stead state and dynamic performance is. System stability with the three predictive current control methods are analyzed in the z-domain considering inductance variation and it turns out that the control methods are stable as long as the inductance value used in the controller is less than twice of the real inductance value of the converter. The effect of inaccurate model and parameters on static current error is investigated and an additional integral controller with small gain is proposed for eliminate such steady-state error. Experimental test results from a prototype converter rated at 360 W/ 10 A within a DC micro gird validate the excellent performance of the proposed schemes.

Published in:

Electrical Machines and Systems (ICEMS), 2011 International Conference on

Date of Conference:

20-23 Aug. 2011