By Topic

Tracking control for air-breathing hypersonic cruise vehicle based on tangent linearization approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guangbin Cai ; Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, P. R. China; Unit 302, Xi'an Research Institute of High-Tech, Xi'an 710025, P. R. China ; Guangren Duan ; Changhua Hu ; Bin Zhou

This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach. The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics. Motivated by recent results on tangent linearization control, the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control. Through a proper model transformation, it can be proven that the tracking error of the designed closed-loop system decays exponentially. Simulation studies are conducted for trimmed cruise conditions of 110 000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated. The effectiveness of the controller is demonstrated by simulation results.

Published in:

Journal of Systems Engineering and Electronics  (Volume:21 ,  Issue: 3 )