By Topic

Canonical framework for multi-channel SAR-GMTI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Congfeng, Liu ; National Lab of Radar Signal Processing, Xidian Univ., Xi'an 710071, P. R. China ; Guisheng, Liao

Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations. The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets. The topic of moving-target detection in clutter has been extensively studied, and there are many methods that are used to detect moving targets, such as displaced phase center antenna (DPCA) method, along-track interfero-metric (ATI) phase, space-time adaptive processing (STAP), or some other metrics. A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods, namely, DPCA and ATI. The statistical test metric for multi-channel SAR-GMTI is established in a simple form, via the definition of the complex central Wishart distribution, to deduce the statistics of the test metric, and the probability distribution of the test metric for multi-channel SAR-GMTI has the complex central Wishart distribution of 1 × 1 case, namely the X2 distribution. The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector, and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:19 ,  Issue: 5 )