By Topic

Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Konstantinos G. P. Derpanis ; York University, Toronto ; Richard Wildes

This paper is concerned with the representation and recognition of the observed dynamics (i.e., excluding purely spatial appearance cues) of spacetime texture based on a spatiotemporal orientation analysis. The term “spacetime texture” is taken to refer to patterns in visual spacetime, (x,y,t), that primarily are characterized by the aggregate dynamic properties of elements or local measurements accumulated over a region of spatiotemporal support, rather than in terms of the dynamics of individual constituents. Examples include image sequences of natural processes that exhibit stochastic dynamics (e.g., fire, water, and windblown vegetation) as well as images of simpler dynamics when analyzed in terms of aggregate region properties (e.g., uniform motion of elements in imagery, such as pedestrians and vehicular traffic). Spacetime texture representation and recognition is important as it provides an early means of capturing the structure of an ensuing image stream in a meaningful fashion. Toward such ends, a novel approach to spacetime texture representation and an associated recognition method are described based on distributions (histograms) of spacetime orientation structure. Empirical evaluation on both standard and original image data sets shows the promise of the approach, including significant improvement over alternative state-of-the-art approaches in recognizing the same pattern from different viewpoints.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 6 )