By Topic

Parameter estimation of DSSS signals in non-cooperative communication system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoming, Zhang ; Communication Research Center, Harbin Inst. of Technology, Harbin 150001, P. R. China ; Zhongzhao, Zhang

A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal processing with too complex computation. Based on the fourth-order cumulant with 1-D slices and adaptive filters, an efficient algorithm is proposed to solve the problem and is extended for nonstationary stochastic processes. In order to achieve the accurate parameter estimation of direct sequence spread spectrum (DSSS) signals, the first step uses the modified fourth-order cumulant to reduce the computing complexity. While the second step employs an adaptive recursive system to estimate the power spectrum in the frequency domain. In the case of intercepted signals without large enough data samples, the estimator provides good performance in parameter estimation and white Gaussian noise suppression. Computer simulations are included to corroborate the theoretical development with different signal-to-noise ratio conditions and recursive coefficients.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:18 ,  Issue: 1 )