By Topic

Passive target tracking using marginalized particle filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ronghui, Zhan ; School of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, P. R. China ; Ling, Wang ; Jianwei, Wan ; Zhongkang, Sun

A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. By making full use of marginalization, the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter, and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter. Simulation studies are performed on an illustrative example, and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation. Real data test results also validate the effectiveness of the presented method.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:18 ,  Issue: 3 )