By Topic

Adaptive tracking controller using BP neural networks for a class of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zilong, Liu ; Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China ; Guozhong, Liu ; Jie, Liu

An BP neural-network-based adaptive control (NNAC) design method is described whose aim is to control a class of partially unknown nonlinear systems. Making use of the online identification of BP neural networks, the results of the identification could be used into the parameters of the controller. Not only the strong robustness with respect to uncertain dynamics and nonlinearities can be obtained, but also the output tracking error between the plant output and the desired reference output can asymptotically converge to zero by Lyapunov theory in the process of this design method. And a simulation example is also presented to evaluate the effectiveness of the design.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:15 ,  Issue: 4 )