By Topic

Internet end-to-end delay dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhu Changhua ; State Key Laboratory of Integrated Services Networks, Xidian Univ., Xi' an 710071, P. R. China ; Pei Changxing ; Li Jiandong ; Chen Nan
more authors

End-to-end delay is one of the most important characteristics of Internet end-to-end packet dynamics, which can be applied to quality of services (QoS) management, service level agreement (SLA) management, congestion control algorithm development, etc. Nonstationarity and nonlinearity are found by the analysis of various delay series measured from different links. The fact that different types of links have different degree of Self-Similarity is also obtained. By constructing appropriate network architecture and neural functions, functional networks can be used to model the Internet end-to-end nonlinear delay time series. Furthermore, by using adaptive parameter studying algorithm, the nonstationarity can also be well modeled. The numerical results show that the provided functional network architecture and adaptive algorithm can precisely characterize the Internet end-to-end delay dynamics.

Published in:

Journal of Systems Engineering and Electronics  (Volume:17 ,  Issue: 3 )