By Topic

Novel Newton's learning algorithm of neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ning, Long ; Coll. of Electronic Engineering, Univ. of Electronic Science and Technology of China, Chengdu 610054, P. R. China ; Fengli, Zhang

Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method's.

Published in:

Systems Engineering and Electronics, Journal of  (Volume:17 ,  Issue: 2 )