By Topic

A Network-Flow Based Pin-Count Aware Routing Algorithm for Broadcast-Addressing EWOD Chips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-Wei Huang ; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ; Shih-Yuan Yeh ; Tsung-Yi Ho

Electrowetting-on-dielectric (EWOD) chips have emerged as the most widely used actuators for digital microfluidic (DMF) systems. These devices enable the electrical manipulation of microfluidics with various advantages, such as low power consumption, flexibility, accuracy, and efficiency. In addressing the need for low-cost and practical fabrication, pin-count reduction has become a key problem to the large-scale integration of EWOD-chip designs. One of the major approaches, broadcast addressing, reduces the pin count by assigning a single control pin to multiple electrodes with mutually compatible control signals. Most previous studies utilize this addressing scheme by scheduling fluidic-level synthesis on pin-constrained chip arrays. However, the associated interconnect routing problem is still not provided in currently available DMF automations, and thus the broadcast-addressing scheme cannot be actually realized. In this paper, we present the first network-flow based pin-count aware routing algorithm for EWOD-chip designs with a broadcast electrode-addressing scheme. Our algorithm simultaneously takes pin-count reduction and wirelength minimization into consideration for higher integration and better design performance. Experimental results show the effectiveness and scalability of our algorithm on a set of real-life chip applications.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 12 )