Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

An IEEE 802.11p-Based Multichannel MAC Scheme With Channel Coordination for Vehicular Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qing Wang ; Sch. of Commun. and Inf. Eng., Univ. of Electron. Sci. and Technol. of China, Chengdu, China ; Supeng Leng ; Huirong Fu ; Yan Zhang

In recent years, governments, standardization bodies, automobile manufacturers, and academia are working together to develop vehicular ad hoc network (VANET)-based communication technologies. VANETs apply multiple channels, i.e., control channel (CCH) and service channels (SCHs), to provide open public road safety services and the improve comfort and efficiency of driving. Based on the latest standard draft IEEE 802.11p and IEEE 1609.4, this paper proposes a variable CCH interval (VCI) multichannel medium access control (MAC) scheme, which can dynamically adjust the length ratio between CCH and SCHs. The scheme also introduces a multichannel coordination mechanism to provide contention-free access of SCHs. Markov modeling is conducted to optimize the intervals based on the traffic condition. Theoretical analysis and simulation results show that the proposed scheme is able to help IEEE 1609.4 MAC significantly enhance the saturated throughput of SCHs and reduce the transmission delay of service packets while maintaining the prioritized transmission of critical safety information on CCH.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )