By Topic

Highway Vehicular Delay Tolerant Networks: Information Propagation Speed Properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Emmanuel Baccelli ; Institut National de Recherche en Informatique et en Automatique, Ecole Polytechnique, Palaiseau, France ; Philippe Jacquet ; Bernard Mans ; Georgios Rodolakis

In this paper, we provide a full analysis of the information propagation speed in bidirectional vehicular delay tolerant networks such as roads or highways. The provided analysis shows that a phase transition occurs concerning the information propagation speed, with respect to the vehicle densities in each direction of the highway. We prove that under a certain threshold, information propagates on average at vehicle speed, while above this threshold, information propagates dramatically faster at a speed that increases quasi-exponentially when the vehicle density increases. We provide the exact expressions of the threshold and of the average information propagation speed near the threshold, in case of finite or infinite radio propagation speed. Furthermore, we investigate in detail the way information propagates under the threshold, and we prove that delay tolerant routing using cars moving on both directions provides a gain in propagation distance, which is bounded by a sublinear power law with respect to the elapsed time, in the referential of the moving cars. Combining these results, we thus obtain a complete picture of the way information propagates in vehicular networks on roads and highways, which may help designing and evaluating appropriate vehicular ad hoc networks routing protocols. We confirm our analytical results using simulations carried out in several environments (The One and Maple).

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 3 )